Sample Problem

P1. $\exists x(Mx \& \forall y(Ty \rightarrow \sim Ayx))$ P2. $\forall x(Mx \rightarrow \exists y(Ty \& \sim Ayx))$ P3. $\forall x(Tx \rightarrow \exists y(My \& Axy))$

Aim is to show that:

Goal 1: $\exists x \exists y (Tx \& Ty \& x \neq y)$ Goal 2: $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z)$

1	$(1) \supset (N \otimes N \otimes (T \otimes N))$	•
1	$(1) \exists x(Mx \& \forall y(Ty \rightarrow \sim Ayx))$	A
2	(2) $\forall x(Mx \rightarrow \exists y(Ty \& \sim Ayx))$	A
3	(3) $\forall x(Tx \rightarrow \exists y(My \& Axy))$	А
4	(4) Ma & $\forall y(Ty \rightarrow \sim Aya)$	A According to line 1, there is an M
		call it "a" by making an assumption for $\exists E$.
4	(5) Ma	4 &E
4	$(6) \forall y(Ty \rightarrow \sim Aya)$	4 &E
2	(7) Ma $\rightarrow \exists y(Ty \& \sim Aya)$	$2 \forall E$
2,4	(8) ∃y(Ty & ~Aya)	$5,7 \rightarrow E$
9	(9) Tb & ~Aba	A P2 tells me something about every M
		isn't related to. I will call the T that isn't
		it, it becomes helpful to keep track of what we
		· ·
		r a partial interpretation) which we will
	Ma continue to fill in as we go a	long.
		8
		-
9	(10) Tb	9 &E
9 9	(10) Tb (11) ~Aba	-
	(11) ~Aba	9 &E
9 3	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$	9 &E 9 &E 3 ∀E
9 3 3,9	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$	9 &E 9 &E 3 ∀E 10,12 →E
9 3	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$ (14) Mc & Abc	9 &E 9 &E 3 $\forall E$ 10,12 $\rightarrow E$ A P3 tells me that for each T, there is
9 3 3,9	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$ (14) Mc & Abc	9 &E 9 &E 3 ∀E 10,12 →E
9 3 3,9	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$ (14) Mc & Abc an M they are related to. I w	9 &E 9 &E 3 $\forall E$ 10,12 $\rightarrow E$ A P3 tells me that for each T, there is
9 3 3,9	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$ (14) Mc & Abc an M they are related to. I w Tb	9 &E 9 &E 3 $\forall E$ 10,12 $\rightarrow E$ A P3 tells me that for each T, there is
9 3 3,9	(11) ~Aba (12) Tb $\rightarrow \exists y(My \& Aby)$ (13) $\exists y(My \& Aby)$ (14) Mc & Abc an M they are related to. I w	9 &E 9 &E 3 $\forall E$ 10,12 $\rightarrow E$ A P3 tells me that for each T, there is

14	(15) Mc	14 & E	
14	(16) Abc	14 & E	
9,14	(17) a≠c	11,16 NI	b is related to c, but not to a;
	so a and c must be different.	At this point l	have proved that there are two
different objects which are $Ms - a$ and c.			
2	(18) Mc $\rightarrow \exists y(Ty \& \sim Ayc)$	2 ∀E	
2,14	(19) ∃y(Ty & ~Ayc)	15,18 → E	

20	(20) Td & ~Adc	А	By P2 there must be a T that
	isn't related to c. Call it "d".		
20	(21) Td	20 &E	
20	(22) ~Adc	20 &E	
14,20	(23) b≠d	16,22 NI	Since b is related to c but d
	isn't, they can't be the same. different Ts.	At this point I	have proved there are two
ፐኬ	T.J.		

Tb Td
$$\downarrow$$
 \downarrow \downarrow
Ma Mc

My first goal was that there are two Ts. I can now prove that.

9,14,20 (24) Tb & Td & b≠d	10,21,23 &I
9,14,20 (25) ∃x∃y(Tx & Ty & x≠y)	∃I x2 24

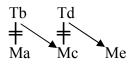
If I was trying to minimize the number of lines to use, I could postpone using $\exists Es$ now and do them all later. But if I wanted to make sure to get all of the partial credit along the way in case I messed up later, I should just go ahead and do the $\exists Es$ now to show that this does follow just from 1-4.

2,9,14	(26) ∃x∃y(Tx & Ty & x≠y)	19,25 ∃E(20)
2,3,9	(27) ∃x∃y(Tx & Ty & x≠y)	13,26 ∃E(14)
2,3,4	(28) $\exists x \exists y (Tx \& Ty \& x \neq y)$	8,27 ∃E (9)
1,2,3	(29) ∃x∃y(Tx & Ty & x≠y)	1,28 ∃E (4)

I have now proved my first goal. To prove my second goal, I will go back to where I was (basically line 23) and continue from there rather than starting over so that I don't have to repeat my work again.

3	(30) $Td \rightarrow \exists y(My \& Ady)$	$3 \forall E$
3,20	(31) ∃y(My & Ady)	21,30 →E
32	(32) Me & Ade	A By P3 this T has to be related to
	some M. I will call it "e".	I have now produced the following diagram:

$$\begin{array}{ccc} Tb & Td \\ \hline + & + \\ Ma & Mc & Me \end{array}$$


	32	(33) Me	32 &E	
	32	(34) Ade	32 &E	
	20,32	(35) c≠e	22,34 NI	Since d is related to e but
isn't related to c, c and e can't be the same.		elated to c, c and e can't be the same.	I haven't yet shown that a isn't c. Maybe the	
	3.6.1.		0 (1'	N . 1 .1

M that T is related to is a. Nothing in my proof (or diagram) yet rules that out. However,

the first thing we did was get an M that nothing was related to. That means that d can't be related to it.

6 ∀E 4 (36) Td $\rightarrow \sim Ada$ $21.36 \rightarrow E$ 4,20 (37) ~Ada 4,20,32 (38) a≠e 34,38 NI I now have the three different Ms. I can finish my proof by putting them in the right place to use $\exists I$ and ∃Ε. 4,9,14,20,32 (39) Ma & Mc & Me & a≠c & a≠e & c≠e 5,15,17,33,35,38 &I 4,9,14,20,32 (40) ∃x∃y∃z(Mx & My & Mz & x≠y & x≠z & y≠z) ∃I x3 39 3,4,9,14,20 (41) $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z) 31,40 \exists E(32)$ 2,3,4,9,14 (42) $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z)$ 19.41 $\exists E(20)$ 2,3,4,9 (43) $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z) 13,42 \exists E(14)$ 2,3,4 (44) $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z) 8,43 \exists E(9)$ (45) $\exists x \exists y \exists z (Mx \& My \& Mz \& x \neq y \& x \neq z \& y \neq z) 1,44 \exists E(4)$ 1,2,3

I have now proved my goal. My final diagram looks like this:

(I also know that ~Ada – but I don't know a good symbol for that!)

So if asked to produce a model of these sentences, here is one:

U: {a,b,c,d,e} T: {b,d} M: {a,c,e} A: {(b,c),(d,e)}

There are other models that would work. More elements would be okay, I could add arrows going from the Ms to the Ts, etc. Practically the only things I can't add are Aba, Ada, and Adc.

Hopefully this should give you a great start on your take-home.